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ABSTRACT

oric\A linearized, input-output model matching problem for single-input, multi- COPY
output nonlinear systems is formulated in the frequency domain, and solved

using dynamic output feedback. The objective is to obtain a desired transfer

function for the family of closed-loop linearized systems.

Introduction

" In recent years there has been rapid development of the closely-related pseudo-

linearization43,4j1and extended linearization; [1,5] approachs for design of nonlinear control

laws for nonlinear systems.. In this papenwe adopt.a frequency-domain viewpoint, and use

results in -f-5 to formulate and solve a linearzed model matching problem for single-input,

multi-output nonlinear systems. The objective is to construct a nonlinear, dynamic, output

feedback control law so that the resulting closed-loop system, when linearized about its family

of constant operating points, has a linearization family with transfer function that matches
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exactly a given parameterized transfer function. If the given transfer function is parameter

independent, then this problem can be viewed as a type of input-output pseudo-linearization

problem.

We consider a single-input, multi-output nonlinear system with input u (t) E R and out-

put y (t) r RP , defined for t > 0. The system is assumed to have a constant operating point

family { [u(a), y(a)], a -r} where the parameter set r c R is an open neighborhood of a

fixed ot E R. That is, for a constant input u (t) = u(a1 ), where at E r is fixed, there exists an

initial condition for the nonlinear system such that the output is the constant, y (t) = y(aj).

Typically, the constant operating point family is parameterized by constant values of the input,

one of the outputs, or one of the underlying states of the system.

We will adopt a local viewpoint throughout this paper and implicitly allow shrinking the

size of r in order to economically state results. (When particular examples are considered, it

often is possible to solve the problem in a nonlocal fashion.) To avoid counting the order of

continuous differentiability, we will assume that all functions and, their derivatives that appear

in the sequel are continuous.

Corresponding to the operating point family { [u(a), y(a)], a E r}, let the pxl

parameterized transfer function of the linearization family for the given nonlinear system be

TO(s) = N(s, a) (I)
d(s, at)

where d (s, a) and each entry of N (s, a) are polynomials in s with coefficients that are real

functions of a, and d (s, a) is monic. We assume that for each a r (I) is irreducible. Also

we assume d(0, a) 0, and N(0, a) #0 for each aE r. Thus Tg,(s) has no fixed poles at

s = 0, and not all entries of T.(s) have a zero at s = 0. Finally we assume that

A(a) = T d.(O) du( ) , acEr (2)

It should be noted that that if d (0, a) A 0 for each a E r, then (2) is a sufficient condition for

T.(s) with {[u(a), y(a)], a = r} to be a linearization family for a nonlinear system. If the

linearized state equation for the nonlinear system has no eigenvalues at zero for each a E r,

then (2) also is necessary. [5]
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Linearized Model Matching

The linearized model matching problem involves computing a nonlinear dynamic output

feedback control law, with new input w.(t) ER, such that when the closed-loop nonlinear sys-

tem is linearized about its constant operating point family, the resulting linearization family

has a given parameterized transfer function. The given parameterized transfer function

(model) for the linearized closed-loop system is written in a form similar to (1),

(S) = N"(s, c)dn(s, a) (3)

where the superscript m stands for model and d' (s, a) is monic. We assume that for a E r

d"'(0, a) # 0 and N"'(0, a) # 0, so that T: (s) has no pole at s = 0 and not all entries of

T' (s, c) have a zero at s - 0. Also we assume that a family w(cg) of constant operating point

values for the new input is given such that

w() - 7-. (o) -- (q), avEr. (4)

so that T7' (s) with ([w(cg), y(a)], a E r} is a linearization family.

The linearized model matching problem will be solved as follows. First we compute, if

possible, a parameterized scalar linear precompensator T .(s) such that

T.(S)r.(S) = 7",(s) (5)

This is illustrated in Figure 1 where the subscript $ indicates deviations from constant-

operating-point values. Then we implement the precompensator 7T. (s) using a parameterized

linear dynamic output feedback configuration. Finally, a nonlinear, dynamic, output feedback

law is computed whose family of linearizations is precisely the parameterized, linear, dynamic,

output feedback law.

From (5) it is clear that N (s, a) and N" (s, a) must satisfy

b(s, a)N(s, a) = a(s, a)N m (s, a), cEr (6)

for a (s, a) and b (s, a) which are scalar polynomials in s with coefficients that are real func-

tions of a. If (6) is satisfied, the parameterized linear precompensator will have the form

(S) = b(s, ,t)d(s, c,) aEr (7)
a(s, a) d"(s, a)
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For. 7(s) to be proper we must have, for each a E r,

6d(s, z) - $5N(s, a)< _&'(s, a) - 6,N (s, a), i = X,...,p (8)

where 6 denotes polynomial degree and 6i denotes polynomial degree of the il row of a poly-

nomial column vector. For example, if the plant and the model are such that

6d(s, cg) - 6d'(s, a), then (8) implies that there should be no more finite zeros in the model

7 (s) than in the linearized plant Ta(s).

The precompensator 71.(s) is to be implemented by a parameterized, linear, dynamic,

output feedback law. Although different implementations are available, a parameterized ver-

sion of the implementation given in [2, pp 519-522] will be developed. This is presented in

some detail because of additional hypothesis required due to parameterization by a. ,

Step 1: Assuming that 6a (s, a) in (6) is constant for a E r, compute least degree polynomials

nf(s, a) and d/(s, a) such that

n f(s,_ ) = r (s) = ( s' ) a r (9)

df(s, a) d(s, a) a(s, a)d"'(s, a) (

Step 2: Letting 6df(s, a) = fand 6d (s, 0r = n, we set

d1(s, a) = v (s, a)df(s, a), T- (s, a) = v (s, a)nfl(s, a) (10)

where v (s, a) = 1 if f_ !n. If f < n, then let v (s, a) be an arbitrary, monic polynomial in s

with coefficients that are real functions of a such that at each a E r, 6v (s, at) = n -f and

v (s, a) has only negative real part roots. Then we can write

Tf (s, a) T 7(,s) ar
df(s, a) d(s, a)

where Zdj(s, c) -7> n.

Step 3: Assume that the observability index of a minimal parameterized linear realization of

Ta(s), that is, the row index of Ta(s) is a constant P for a E r. Let d,(s, a) be a monic poly-

nomial in s with coefficients that are real functions of a such that at each a EIr,

6de(s, a) 11 r > P- 1, -f(s, *)/dc(s, a) is proper and d,(s, a) has only negative real part roots.

Set w (s, a) - 1 iff>n + r, and if 7 < n + r, let w (s, a) be a monic polynomial in s with

coefficients that are real functions of a such that at each a C r, 6w (s, a)= n + r -7:5 r, and



w (s, a) has only negative real part roots.

Step 4: If 61w (s, a)d1(s, a)]< n + r, set q (s, a) = 1. Otherwise use polynomial division to

write

d7(s, a) = qI(s, a)d(s, a) + rI(s, a), 6rI(s, a) < 6d(s, a)

w(s, a)q1 (s, a) = dc(s, a)q(s, a) + r2(s, a), &2(s, a) <& (s, a) (11)

In this division process it can happen that q I(s, at) will have coefficients that are infinite at

particular values of a e r. A similar singularity issue can arise for q (s, a), and also the possi-

ble occurrence of roots at s = 0 in q (s, a) complicates the subsequent calculation of nonlinear

compensators. It is possible that these difficulties can be avoided by judicious choice of

dc(s, a). A solution in any case is to increase r = 64c(s, a) to avoid the divisions in (11),

though this does result in increased compensator dimension. (Note that choosing de(s, a),

v (s, a) and w (s, c) to be independent of a will simplfy matters.)

Step 5: Let

k(s, a) = w(s, a -f(s, a) (12)

and determine polynomials I (s, a) and M(s, a) from

w (s, at)dj(s, a) -dc(s, a)q (s, at)d (s, at)

- l(s, a)d(s, a) + M(s, a)N(s, a) (13)

Step 6: Define the parameterized linear compensators in Figure 2 according to

C"(s) =k(s, a) (14)
dc (s, a)

Ca(s) 1 (15)

C3 ':' = I I(S, a) M (s, a) (16)
dc,(s, a) T, (-sa)]

It is straightforward to verify that the parameterized transfer function for the system in

Figure 2 is 7" (s). It should be noted that this parameterized linear system may not be

minimal in the sense of linear systems. However, the above implementation of 7 (s) is such
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that. the system will be internally stable so long as 7" (s) is stable.

The final task is to compute a nonlinear, dynan'c, output feedback control law whose

linearization family is precisely the parameterized, linear control law shown in Figure 2. Of

course, the closed-loop, parameterized linear system in Figure 2 described by 7", (s) together

with {w(a), y(a)], aer} is a linearization family, and Ta(s) with {[u(a), y(a)], aEr} is a

linearization family. Now we define constant operating point values according to

a w a I d

r(a) = fC(0) (u)du, ( = C(0) da

'du~
v(a) fC:(O) d do, (17)

so that each parameterized linear compensator with its associated constant operating point

family forms a linearization family. Using (2) and (4) it is not difficult to verify

e(a) = r(a) - v(a) explicitly, that is, these definitions are consistent. The construction of non-

linear compensators from these compensator linearization families is discussed in [5], and will

be illustrated in an example.

In order to summarize the foregoing development, we state the following theorem.

Theoren Suppose we are given a model (3) and a nonlinear system with linearization family

(1) such that, for a Er, where r is a sufficiently small neighborhood of co, d (0, a) 0 0,

N (0, a) 0, dm (0, a) # 0, N' (0, a) # 0, and (2), (4) hold. Then there is a dynamic output

feedback control law that solves the linearized model matching problem if for a E r

i) Ta(s) is irreducible;

ii) the row index, v.', of T.(s) is constant;

iii) N(s, a)b (s, a) = a (s, a)Nm(s, a) for scalar polynomials a (s, a) and b (s, a),

where 6a (s, a) is constant;

iv) 6d(s, a) -6N (s, a)5 <6d "(s, a) -6N'(s, a), i = p.

Example: The dynamics of an inverted pendulum on a cart are described by

X2 = gsin(x 1) -anlij sin(x )cos(x 1) - acos(x I)u

41/3 -awncos 2(x1)
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where x I is the angle of the pendulum from the vertical, u is the force applied to the cart,

a = 11(m + M), mis the pendulum mass,M isthe cart mass, 21is the pendulum length and g

is the acceleration due to gravity. The constant operating point family is easily parameterized

by the first component of the state:

u~~~~ct) ~ ~ ~ a ==ana ,xa t o

The transfer function of the linearized system is

T.(S) = s2 C()

where

b~~ ()=413 9C(a) = acos(a)
_4/ anlCOS2(a)ICOS(a) 41/3-_ arntCOS2 (a)

Note that T.(s) is irreducible and has neither pole nor zero at s = 0 for any ci E ir since

41/3 > ami, and also that (2) is satisfied. Let the model be specified by

(s +1) 2 ' w, )

Obviously (4) is satisfied, and the precompensator is given by

rl~ = S2 -b (a)
C (a)(s + 1)2

To implement 7' (s) by the feedback configuration in Figure Z we apply the algorithm ?'s fol-

lows.

Step 1: Let nf{s, a) = 1, d(s, a) = c (a)(s + 1)2.

Step 2: Since 6df(s, a) =f -Z 8d (s, a) a n -Z let v (s, a) - 1, and set d1(s, a) - dfs, a),

if-(s, a) = n1(s, a), withf f - 2.

Step 3: Since v=n=2, let r-1, and d(s,a)-s+l1. Then f<n+r, and we let

w(s, a) = s + 1.

Step 4: Since 6[w (s, ci)d1(s, a)) - n + r, let q (s, a) - 1.

30ADI III'!I
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Step 5: Let k (s, a) = w (s, a)npfs, a) = s + 1, and solve (12) to obtain

l(s, a) = [cC c)-]s +3c()- 1

M(s, a) = [b (c) + 3]s + 3b(a) + I

Step 6: The parameterized linear compensators in Figure 2 are easily computed to be

C11(s) = C2(,) = -1

C.3(S) = [[c (a)- 1s + 3c (a) - I [b (a) + 3]s + 3b (,) + 1

From (17), r(q) = w(a), e() = u(a), and v(a) a a- (g /a)tan(a). Thus the nonlinear com-

pensators associated with C. (s) and C2 (s) can be taken as unity gains. A parameterized

linear realization for the compensator C. (s) is

U6
V=r 6 + [c(c,)- 1 b(a)+ 3] ], v(,) = a,- oltan(ca)

Finally, it is easy to check that a corresponding nonlinear compensator is described by [5]

i = - r-2y + 2gsin(v) - 2aucos(y)
41/3 - amco2 )

=T-U +3Y + gsin(y)-auos)
41/3 - amlcos2(y)

Remark Linearized model matching can be generalized to the case where TG,(s) and 7"T (s)

have poles at s = 0 that are invariant with respect to a E r. The main changes to be made

involve a more complicated characterization of the associated constant operating points for

the linearization families. For example, suppose Ta(s) is such that that

d(s, a) = (s- 1 + di(a)sn-2 + + d,,.(a))s

LAad(s, a)s, di(a)ER, d,..1(a) t0 for aEr (18)

Then we must have u(a) = 0 for a r r. To characterize the associated constant operating
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point output, write Ta(s) as the concatenation of

(s) =^N(s, at) (19)
d(s, cz)ts + 1)

with outputy and input ii, and

T.(S) = (20)

with input u and output i. It is easy to see that Ta(s) with [u(a), y(a)] is a linearization family
A

if and only if fi(a) can be found such that T.(s) with [fi(a), y(a)], and Ta(s) with [u(a), fi(a)]

both are linearization families. Since Ta(s) with u(a) = 0 and any fi(ce) is a linearization fam-

ily, Ta(s) with {[u(a) = 0, y(a)], a E r} is a linearization family if fi(a) can be found such that

A(a) = -".(0) di(a), for aEr (21)

Conclusions

The linearized model matching problem is a natural extension of eigenvalue placement

problems formulated in terms of extended linearization [1] or pseudo-compensation [41 in that

numerator gains and zero locations of the linearized closed-loop system are explicitly

addressed. This additional capability can be useful when acceptable performance cannot be

achieved by assignment of linearized-system eigenvalues alone.

If a parameterized compensator can be found such that the model can be taken to be

independent of a, as in the Example, then the linearized model matching problem leads to

what might be called input-output pseudolinearizaion. However this bears only loose resem-

blance to the original notion of pseudo-linearization in that variable changes are not involved,

full state feedback is not used, and the dimension and eigenvalue locations of the closed-loop
linearization family are not specified a priori

One disadvantage of the frequency-domain approach used here is that extension of the

results to the multi-input case, though clear in broad outline, is difficult in detail. For exam-

pie, suppose the parameterized linear compensators are specified in terms of parameterized

transfer function matrices. In the course of constructing the nonlinear compensators, compu-

tation of parameterized linear realizations of the transfer function descriptions can lead to

singularities with respect to the parameter vector a that are not easily shown to be removable.



Also, the so-called integrability conditions for the exstence of a nonlinear control law

corresponding to a parameterized linear control law are nontrivial in the multi-input case.
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